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NOMENCLATURE

coordinate measured in the direction of
motion;

coordinate measured normal to the
direction of motion ;

velocity in the x direction;

velocity in the y direction;

acceleration due to gravity;

pressure;

temperature;

enthalpy;

heat-transfer coefficient ;

heat flux;

temperature difference between the wall
and the ambient fluid, (7,,— T,,);
specific heat at constant pressure
integrated mean value of C, (i, —i,)/AT;
dynamic viscosity ;

density;

thermal conductivity ;

shear stress;

coefficient of thermal expansion;

grid point counter ;

second grid point measured inward from
the outer edge of the boundary layer;

NP2, fictitious grid point at the outer edge

of the boundary layer;

NP3, grid point at the outer edge of the

boundary layer.

Subscripts
cr, properties corresponding to critical point;
o,  properties evaluated in bulk fluid;
w, properties evaluated at the wall ;
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Abstract—Numerical predictions are made for laminar free convective heat transfer to fluids in the near-
critical region from a vertical flat plate with uniform surface heat flux. The variation of all the
thermophysical properties have been taken into consideration. The governing equations are integrated
using the Patankar-Spalding implicit finite difference scheme. Computations are made for carbon dioxide
at pressures of 75 (P/P, = 1.015), 80 (P/P_, = 1.083) and 100 (P/P_, = 1.354) bar and for water at
pressures of 225 (P/P, = 1.018) and 245 (P/P, = 1.108) bar, for various values of wall-heat flux ranging
from 1000 W/M? to 50000 W/M?. Based on the results obtained, a correlation has been proposed to
evaluate the local heat-transfer coefficient for a wige range of Rayleigh numbers (Ra, = 5 x 1055
x 1019).

c, refers to the edge of the Couette flow

region;
* conditions corresponding to the peak
value of C,,.
Non-dimensional parameters
Yoo = (ou/u).y;
Uy, = uf U;
My = plf, Hes
gpy. .
P +3 = (pu2; s
. — (Iw_l)(pu)c .
L [
Dy
T =1/lpu),;
Pr,  Prandtl number, (uc,/k);
Ra,  Rayleigh number, (gBATx3p?/y?) Pr;
Ra*, Rayleigh number, (gBq, x*p?/ku)- Pr;
Nu, Nusselt number, hx/k,.

INTRODUCTION

THE NECESSITY for studying the heat transfer to the
fluids in the near-critical region has increased due to
the recent use of near-critical fluids in various
industrial applications. It is generally known that,
near the critical region the process of heat transfer
would become complicated due to the severe
variation of the thermo-physical properties of the
fluid, especially near the pseudo-critical point (which
is defined as the point, where the specific heat at
constant pressure becomes maximum). Typical
variation of thermo-physical properties of carbon
dioxide in the near-critical region at 75 bar is shown
in Fig. 1. It has been established that conventional
constant property correlations and theoretical
models fail in predicting, accurately, the heat-
transfer rates in the near-critical region.
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Fi1G. 1. Variation of properties of carbon dioxide at 75 bar.

A number of investigations, both theoretical and
experimental, have been reported in the literature on
free convective heat transfer to fluids in the near-
critical region. All the analytical investigations [ 1-6],
except the one by Ito ez al. [7] have been carried out
for the case of constant wall-temperature conditions.
All the experimental investigations [8-12] have been
confined to surfaces with practically uniform heat
flux conditions. Ito et al. [7] have investigated the
problem of free convective heat transfer to near-
critical carbon dioxide from vertical plate with
prescribed uniform heat flux by using an integral
method. Accurate results cannot be obtained by
using an integral method, because velocity and
temperature profiles have to be assumed and no
experimental data in the form of velocity and
temperature profiles is available in the near-critical
region.

The object of the present study is to use a more
accurate method than the integral technique to
investigate the problem of laminar free convective
heat transfer to fluids in the near-critical region from
a vertical plane surface with prescribed uniform
heat flux. Two fluids, water and carbon dioxide
are chosen for investigation. Numerical computa-
tions are made for water at pressures of 225bar
(P/P,, = 1.018) and 245bar (P/P, = 1.108) with T,
= 370°C and for carbon dioxide at pressures of
75bar (P/P, = 1.015), 80bar (P/P, = 1.083) and
100 bar (P/P, = 1.354) with T, = 24.86°C for wide
range of surface heat fluxes from 1000 W/m? to
50 000 W/m?.

BASIC EQUATIONS

A semi infinite vertical flat plate with prescribed
uniform heat flux is chosen as the physical model.

Steady, two dimensional stable laminar boundary-
layer flow conditions are assumed. For these con-
ditions, equations for conservation of mass, momen-
tum and energy may be written in the following
form:

== (pv}) =0 1)
1) S Ju
mt(g—,‘g”)wwv(a}) 9P — p}+ (5;) 2)
A N o ki)
m(i)relG)-5lE5) o
with the boundary conditions of

k N/ oiN
ev-0i -(&)(5)

= ¢, = aconstantaty =0

u=0; i=i, at y= 0. 4)

Since the velocities encountered in laminar free
convective flows are very small, viscous dissipation is
neglected. The cross stream independent variable, y
1s transferred to a dimensionless, normalised stream
function,  so that the finite difference grid, which is
employed in the solution of the boundary-layer
equations grows or contracts to fit the defined
boundary layer. With the transformation the set of
equations (1)—(3) can be written:

u {(pV)z+[(PV)E"(PV)r]w} ou
ox (e~ ) ] dw

_Apx—p), G| pup  Ou
= *‘aw[wg—w aw] )
o [ (oup/Pr)

aw[(asE 17 ] ©)

o N (pv) + [{pv)s— (PV)I]m}ﬁi_
ox (be—¢)) 0w

The stream functions at the inner and outer edge of
the boundary layer and the dimensionless stream
function are then defined as follows:

Wi gy, 0 601
dx dx Pr—o,;
The finite difference forms of the equations {3) and

(6) are obtained by integrating them over areas
surrounding the grid points.

—(pv)s,

Y

= —(pV)g, © =

NUMERICAL SOLUTION

The resulting difference equations are solved using
the Patankar-Spalding program [13]. The most
significant feature of the Patankar-Spalding method
is the one dimensional treatment of the region near
the wall. Near a wall, the velocity, u is small and
therefore, the convection in x direction is locally
negligible. Thus near a wall, there exists a “Couette
flow”, i.e. a one dimensional flow in which the
conditions are determined primarily by fluxes of
momentum and energy across the boundary layer.
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Therefore, for this region the flow can be described
by ordinary differential equations which can be
integrated directly to yield the values and slopes of
the dependent variables at the edge of the Couette
flow region. These values are used as boundary
conditions for the finite difference solution, which is
used from the edge of the Couette flow region to the
outer edge of the boundary layer. This results in
reducing the required number of cross stream grid
points considerably.

The Patankar-Spalding program [13] is suitably
modified to solve free convection problems. Another
modification in the treatment of the Couette flow
region is necessary to account for the severe
variation of the thermophysical properties in the
near-critical region. For the Couette flow region the
simplified form of the momentum and energy
equations are

d du’
;(u3)+g(pw—p)=0 @8)
A AR 4

d(p diy

SEs)-e o

Equations (8) and (9) in terms of non dimensional
parameters can be written as:

d <u+du+\+ 1
dy, dy+) Vie

pe diy
Prdy, 1. (1)

In order to integrate equations (10) and (11) the
variations of p,, u, and Pr in the Couette flow
region are required. In the Couette flow region,
linear variation of p, and u, with y, are assumed,
as the temperature change across this region is small
due to the small thickness of the region;

-p+]=0 (10

0. =p+w+w (12)
V+e
1— w

Uy =#+W+M. 13)
y+c

Using equations (12) and
integrated twice to give

(# du_+ - (I—psy)
\ +dy+)w y+cln(1/lu+w)

1 lu+w
“”*w"”*w)[ln(lmw) - 1—u+w}
_(PH p+w)’7 (1-3u.,)

T | Uil

Hiw \
+2(M1—u+w) } (14)

The variation of the Prandtl number in the near-
critical region is similar to that of C, and reaches a
peak near the pseudo-critical temperature, T,. Hence
the integration of equation (11) is carried out for two
separate cases:

(13), equation (10) is

Case (i) T, <Ty<T,or T, <Te<T,.

The Prandtl number variation is expressed as;
(Pr.—Pr)i,

l+c

Pr=Pr, + (15)

Integration of equation (11) using (13) and (15) gives

(Pr,—Pr,)

. Y+
=-—27¢ _In(1 In——-&5&—_—*-,
lye n(l/p,,}n (Pr./Pr,)

(1—”+w)
Te< T, <T,.

(16)
Case (ii):

For this case the Prandtl number variation can be
expressed by two line segments

Pr, ~Pr,)i
pr=pr".+()r*;.r—w)l+ 0<i+<i+* an
Iy
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The downstream profiles of velocity and enthalpy
are determined using the set of finite difference
equations simultaneously with equations (14) and
(16) or (19). Properties of water in the near-critical
region are taken from [15], while those for carbon
dioxide are taken from [16]. A computer subroutine
to interpolate, linearly the property values from these
data is included in the program. For laminar flow,
the w-distribution, the entrainment rate and the
initial profiles for velocity and temperature have to
be specified. Near the critical region the Prandtl
number is high (Pr > 1) and hence the region of
significant temperature gradient will occupy a small
portion of the velocity boundary layer. It is therefore
necessary to provide an w-distribution which will do
justice to both velocity and thermal boundary layers.
Near the wall and w-spacings must be small;
elsewhere they may be large. The distribution

1-2 \?

= (sz =2 )

gave satisfactory results for all the cases studied. For
a free outer boundary, the use of w as the cross
stream independent variable requires the specifi-

cation of the entrainment rate into the flow for each
downstream step. The entrainment rate is given by

(20)

—2pun+Unps
Yypa+ Yy

The above formula is obtained by assuming a
parabolic velocity profile and using the simplified
form of the momentum equation at the outer edge of
the boundary layer. The initial profiles required for
this method are based on the polynomial profiles

(pv)g = @n
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used for the integral solution of the constant
property boundary layers under constant wall-heat
flux conditions. 41 grid points are used and the
solution is terminated at Ra,, = 5 x 10'°,

RESULTS AND DISCUSSION

The velocity profiles for carbon dioxide at 75 bar
for different values of the wall-heat flux are shown in
Fig. 2. The maximum velocity in the boundary layer

20

PR <1015
T =238°K
Ty =305°K

~ 15,000
o 12,500
10,000

= 7,500

e 5,000

u,Cm/sec

2
o

yx\Oa, Cm

FiG. 2. Velocity profiles for carbon dioxide at 75 bar at
x =0.03m.

increases with ¢, and the location at which the
maximum occurs shifts towards the wall as g,
increases. The temperature profiles, shown in Fig, 3
indicate that, whenever the value of g,, Is such that
T, lies between the wall temperature and that of the
ambient fluid, there is a distortion of the temperature
profile. The distortion of the profile may be
attributed to the nature of variation of C, with
temperature. For temperature less than T,, C,
increases with temperature, while for temperatures
greater than T, C, decreases with the increase in
temperature. The distortion occurs at a point where
the slope dCp/dT changes its sign. There is no
distortion of the temperature profile for values of g,
which gives wall temperatures lower than 7.

Figure 4 shows the variation of the heat-transfer
coefficient with the wall-heat flux, g,. The heat-
transfer coefficient gradually increases with g,, until
the wall temperature is several degrees (2-8°C)
higher than 7,. Further increase in g, results in
decreasing the heat-transfer coefficient. In the near-
critical region the heat-transfer coefficient depends
not only on AT, but on the individual values of T,
and T, as well. The severe variation of Cp in this
region affects the temperature distribution in the
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FiG. 3. Temperature profiles for carbon dioxide at 75 bar at
x =0.03m.

boundary layer which in turn may decide the value
of the heat-transfer coefficient. Figure 4 also indicates
that for a specified value of g, the heat-transfer
coefficient increases as the pressure of the fluid
approaches the critical value. The variation of the
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F1G. 4. Variation of heat-transfer coefficient with wall-heat
flux at x = 0.03m for different pressures.

temperature difference, AT with g, presented in Fig.
5, indicates that AT increases with ¢,. Also an
inflexion point exists at a certain value of g,, for each
pressure, which indicates a peak in the value of the
heat-transfer coefficient. The wall temperature distri-
bution for some typical values of ¢, is presented in
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Fig. 6. For values of g, such that the wall
temperature is in the neighbourhood of T, the
increase of wall temperature with x is comparatively
small. As the wall heat flux increases, the rate of
increase of wall temperature becomes appreciable.
The predicted wall temperatures are compared in
Fig. 7 with the wall temperature distribution ob-
tained by Sparrow and Gregg [14] for constant
property case. In this figure, the constant property
solution is indicated by the continuous curve and L
represents the value of x at which Ra* = 10'°. It can
be observed that for low values of g,, such that the
wall-temperature is lower than T,, the predicted
temperatures agree very well with those of Sparrow
and Gregg. This can be expected because, when both
T, and T, are much away from T, the variation of
the physical properties is monotonic and gradual.
However as ¢, is increased so as to give wall
temperatures in the neighbourhood of T, the wall
temperature distribution is quite different from that
of Sparrow and Gregg.
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F1G. 6. Variation of wall-temperature with x for carbon
dioxide at 75 bar.

Based on 352 data points for carbon dioxide, a
correlation, to evaluate the local heat-transfer coef-
ficient is obtained by the method of least squares.
The correlation is

(Nu), = 0480(Ra,,)* 251 (Cp/Cp )4
X (Po/Pw) T oo H) ™ 03Bk o [, ) 5B4 (22)

The above form was assumed to account for the
variation of the physical properties in the near
critical region. The maximum scatter of the data with
respect to equation (22) is found to be +10%, the
standard deviation being 7°;. The scatter is more
near the critical pressure and when the wall
temperature is in the neighbourhood of T,. For some
typical conditions, Fig. 8 shows the comparison of
equation (22) with the correlation suggested by
Sharma and Protopopov [11]. Their correlation,
based on experimental data gives higher values of
heat-transfer coefficient (up to 20%) than those
obtained using equation (22). This difference may be
attributed to the fact that the deviation of the
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F1G. 7. Comparison of wall-temperature distribution for carbon dioxide at 75 bar with constant property
solution.
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F1G. 8. Comparison of the present data with the available experimental data.

experimental data of Sharma and Protopopov from
their correlation was found to be +20°9. Further
they have obtained their experimental data for the
case of free convective heat transfer from vertical
tubes. In Fig. 8, the present correlation, equation
(22) also is compared with the correlation suggested
by Kato et al. [12]. Their correlation also predicts
higher values of the heat-transfer coefficient than
those obtained using equation (22). They have used
integrated mean properties in their correlation and
have found that their correlation gives higher values
of heat-transfer coefficient (up to 25%) than their
experimental data.

It is desirable to have a single correlation for
different fluids and hence a correlation is obtained
using 570 data points for water and carbon dioxide.
The correlation is

(Nu), = 0475(Ra,, ) ?°°(Cp/Cp )>**!
X (Poo/P2)° 08 (oo /1) 20 (K oy /) 7007,

The maximum scatter of the data is found to be
+20%, the standard deviation being 13.55%. The

(23)

COMPARISION A COMPARISION B

AT x hq Qw x h_q
'K} (M) | By (WM | (M) hy
8-0 0-0045 [ 1-092 7500 | G-0100 1-065
8-0 0:0150 1-113 7500 0-0478 1-135
12:0 | 0-0100 1-115 10,000 00154 1:135
12-0 | 0-0244 1123 10,000 00266 1140
i4-0 | 0-0075 1:098 10,000 0-0368 1175
14-0 0-0160 1-116 12,500 0-0104 1150
16-0 0-0110 1-104 12,500 00150 1165
16-0 0-0235 1115 12,500 0-0210 1-170
18-0 0-0155 1-13 12,500 0-0272 1-180
18-0 0-032% 1-117 15,000 g-0102 1-160
15,000 0-0132 14175

Fi1G. 9. Comparison between the values of heat-transfer
coefficient for uniform wall-temperature and uniform wall-
heat flux conditions.

two correlations, equation (22) and equation (23) are
found to agree with each other within +6%,.

In Fig. 9 the present solution for constant wall-
heat flux conditions are compared with the authors’
solution for constant wall temperature conditions
[17]. Comparison is made for carbon dioxide at
75bar. In this table h, is the local heat-transfer
coefficient for the present uniform heat flux condition
and h,, the local heat-transfer coefficient of the
constant wall temperature solution [17]. In com-
parison A the plate surface temperatures in both the
solutions are equal for the same elevation x, and in
comparison B the surface heat fluxes are equal for
the same elevation x. In comparison A4 the ratio,
h,/h, is in the range from 1.09 to 1.12, whereas in
comparison B the ratio is in the range from 1.07 to
1.18. Further in comparison A, the ratio is very
nearly independent of x and T, whereas in com-
parison B, the ratio seems to depend on the values of
both x and gq,,.

CONCLUSIONS

Laminar free convection problems for fluids in the
near-critical region under constant wall-heat flux
conditions can be solved using the
Patankar-Spalding method with suitable modifi-
cations of the wall functions to account for the severe
variation of the physical properties in the near-
critical region. The solutions obtained have indicated
that, the wall-temperature distribution for near-
critical fluids is quite different from that for fluids
under conditions away from the critical region.
Comparison of the solution for constant wall-heat
flux conditions with that for constant wall-
temperature conditions has shown that the heat-
transfer coefficients for constant wall-heat flux
conditions are 10-20% higher than those for con-
stant wall-temperature conditions. Whenever the
pseudo-critical temperature lies between the wall
temperature and the ambient fluid temperature the
temperature distribution in the boundaty layer is
distorted in the region, where the temperature
corresponds to the pseudo-critical temperature. The
correlation proposed to evaluate the local heat-
transfer coefficients gives values which are within
20% from the available experimental data.
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CONVECTION THERMIQUE NATURELLE DE FLUIDES, PROCHES
DE L’ETAT CRITIQUE, AU CONTACT DE SURFACES VERTICALES
AVEC FLUX THERMIQUE UNIFORME

Résumé—Des calculs numériques sont développés pour la convection laminaire, naturelle de fluides
proches de I'état critique et une surface plane verticale chauffée a flux uniforme. On prend en compte la
variation de toutes les propriétés thermophysiques. Les équations sont intégrées en utilisant la méthode
implicite aux différences finies de Patankar et Spalding. Des calculs sont effectués pour le gaz carbonique
a 75 bar (P/P,, = 1,015), 80bar (P/P,, = 1,083) et 100bar (P/P, = 1,354) et pour I'eau 4 225 bar (P/P,,
= 1,018) et 245bar (P/P, = 1,108), avec des valeurs de flux pariétal variant de 1000W/m?> a
50000 W/m?. Basée sur les résultats obtenus, une formule est proposée pour évaluer le coefficient de
transfert local, pour un large domaine de nombre de Rayleigh (Ra,, = 5 x 10° a5 x 10'°).

WARM.EﬂBERTRAGUNG DURCH FREIE KONVEKTION AN FLUIDE
IM UBERKRITISCHEN GEBIET VON SENKRECHTEN FLACHEN
MIT GLEICHFORMIGEM WARMESTROM

Zusammenfassung—Es werden numerische Berechnungen fiir die Wirmeiibertragung durch laminare
freie Konvektion an Fluide im nahkritischen Gebiet von senkrechten Flidchen mit gleichbleibendem
Wirmestrom durchgefiihrt. Es wurden die Veréinderungen aller thermophysikalischen Eigenschaften
beriicksichtigt. Die maflgebenden Gleichungen wurden nach dem implizierten finiten Differenzen-Schema
nach Patankar—Spalding integriert. Es wurden Berechnungen fiir Kohlendioxid bei Driicken von 75 bar
{p/pi. = 1,015); 80 bar (p/p,, = 1,083) und 100 bar {p/p,, = 1,354} und fiir Wasser bei Driicken von 225
bar {p/p,, = 1,018) und 245 bar (p/p,, = 1,108} durchgefiihrt, bei denen die Wand-Wirmestromdichten
von 1000 bis 50000 W/m? variiert wurden. Mit den erzielten Ergebnissen wurde die hier vorgeschlagene
Bezichung entwickelt, mit der die 6rtlichen Wirmeiibertragungskoeffizienten in einem weiten Bereich von
Rayleigh—Zahlen (Ra,, = 5 x 10° bis 5 x 10!%) berechnet werden kénnen.



20

T. R. SEETHARAM and G. K. SHARMA

CBOBOJHOKOHBEKTUBHbBIA MEPEHOC TEIJIA OT BEPTHUKAJIbHbIX
PABHOMEPHO HATPEBAEMbIX TNOBEPXHOCTEN K XHWUAKOCTAM
B OKOJIOKPUTUYECKON OBJIACTU

Annotauua — BbinosiHeHbl YHCNEeHHbIE Pacy€Thl NMEPEHOCA TEMIa OT BEPTUKAJIBHOMN MUIOCKOH paBHO-
MEPHO HarpeBaeMoi MIACTHHLI K XHIAKOCTAM TMpPH AaMHHApHOH cBOOOAHON KOHBEKUMH B OKOJO-
KpHTHUuecKoi 001acTH ¢ Y4ETOM M3MEHEHHS BCEX TermohH3nYecKuX XxapakrepucTHk. McxoaHble
YPaBHEHHMs MHTErpUPOBA/IMCh C MNOMOLLBLIO HEABHOH KOHEMHO-pa3HOCTHOM cxemsl [laTaHkapa-
Cnonaunra. PacyéTbl BbINONHEHbI ANA OBYOKMCH yriepoaa TNpH gaeneHusax 75 (P/P.=1,015),
80 (P/P.,=1,083) n 100 (P/P., = 1,354) 6ap u ana Bonbl npu naeneHusx 225 (P/P.,=1,018) u
245 (P/P., = 1,108) 6ap npH pa3/JH4HbIX 3HAYEHUAX TIOTHOCTH TEILUIOBOTO MOTOKA Ha CTEHKE B
auanazose oT 1000 s1/M2 o 50 000 BT/M2. Ha OCHOBaHMH MOJIy4YeHHbIX PE3y/bTATOB NPEIOXEHO
0006LUEHHOE COOTHOLLEHHE AJIA JIOKAIbHOTO KO3(Q@HLHEHTA TerioobMeHa B LUHPOKOM OHAMA30OHE
3HaveHui uucna Penes (Ra, =5 x 10% go 5 x 10'9),



