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Abstract-Numerical predictions are made for laminar free convective heat transfer to fluids in the near- 
critical region from a vertical flat plate with uniform surface heat flux. The variation of all the 
thermophysical properties have been taken into consideration. The governing equations are integrated 
using the Patankar-Spalding implicit finite difference scheme. Computations are made for carbon dioxide 
at pressures of 75 (P/P,, = 1.015), 80 (P/P, = 1.083) and 100 (P/P, = 1.354) bar and for water at 
pressures of 225 (P/P, = 1.018) and 245 (P/P, = 1.108) bar, for various values of wall-heat flux ranging 
from lOOOW/M* to 50000W/M2. Based on the results obtained, a correlation has been proposed to 
evaluate the local heat-transfer coefficient for a wide range of Rayleigh numbers (Ra, = 5 x 106-5 

x 1O’O). 

NOMEN~~TURE 

coordinate measured in the direction of 
motion ; 
coordinate measured normal to the 
direction of motion ; 
velocity in the x direction ; 
velocity in the y direction ; 
acceleration due to gravity; 
pressure; 
temperature ; 
enthalpy ; 
heat-transfer coefficient ; 
heat flux ; 
temperature difference between the wall 
and the ambient fluid, (T,- T,); 
specific heat at constant pressure : 
integrated mean value of C,(i, - &)/AT ; 
dynamic viscosity ; 
density ; 
thermal conductivity ; 
shear stress ; 
coefficient of thermal expansion ; 
grid point counter ; 
second grid point measured inward from 
the outer edge of the boundary layer; 
fictitious grid point at the outer edge 
of the boundary layer ; 
grid point at the outer edge of the 
boundary layer. 

Subscripts 

cr, properties corresponding to critical point ; 
a, properties evaluated in bulk fluid ; 
w, properties evaluated at the wall ; 
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c, refers to the edge of the Couette flow 
region ; 

* 3 conditions corresponding to the peak 
value of C,. 

Non-dimensional parameters 

Y+, 

u+, 
P+, 

P+r 

r+, 
pr, 
Ra, 
Rae, 

Nu, 

9PYC 
=@u2)c; 

PrandtI number, (pc,/k); 
Rayleigh number, (g@ATx3p2/p2)* Pr ; 
Rayleigh number, (g/?q,x4p2/kp2) * Pr ; 
Nusselt number, hx/k,. 

INTRODUCTION 

THE NECESSITY for studying the heat transfer to the 
fluids in the near-critical region has increased due to 
the recent use of near-critical fluids in various 
industrial applications. It is generally known that, 
near the critical region the process of heat transfer 
would become complicated due to the severe 
variation of the thermo-physical properties of the 
fluid, especially near the pseudo-critical point (which 
is defined as the point, where the specific heat at 
constant pressure becomes maximum). Typical 
variation of thermo-physical properties of carbon 
dioxide in the near-critical region at 75 bar is shown 
in Fig. 1. It has been established that conventional 
constant property correlations and theoretical 
models fail in predicting, accurately, the heat- 
transfer rates in the nearcritical region. 
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FIG. 1. Variation of properties of carbon dioxide at 75 bar. 

A number of investigations, both theoretical and 
experimental, have been reported in the literature on 
free convective heat transfer to fluids in the near- 
critical region. All the analytical investigations [l-6], 
except the one by Ito et a!. [7] have been carried out 
for the case of constant wall-temperature conditions. 
All the experimental investigations [g-12] have been 
confined to surfaces with practically uniform heat 
flux conditions. Ito et af. [I73 have investigated the 
problem of free convective heat transfer to near- 
critical carbon dioxide from vertical plate with 
prescribed uniform heat flux by using an integral 
method. Accurate results cannot be obtained by 
using an integral method, because velocity and 
temperature profiles have to be assumed and no 
experimental data in the form of velocity and 
temperature profiles is available in the near-critical 
region. 

The object of the present study is to use a more 
accurate method than the integral technique to 
investigate the problem of iaminar free convective 
heat transfer to fluids in the near-critical region from 
a vertical plane surface with prescribed uniform 
heat tIux. Two fluids, water and carbon dioxide 
are chosen for investigation. NumericaI computa- 
tions are made for water at pressures of 225bar 
(P/P,, = 1.018) and 245 bar (P/P,, = 1.108) with T, 
= 370°C and for carbon dioxide at pressures of 
75 bar (P/P,, = 1.015), 80 bar (P/P,, = 1.083) and 
100bar (P/P, = 1.354) with T, = 24.86”C for wide 
range of surface heat fluxes from 1000 W/m2 to 
50000 W/m*. 

BASIC EQUATIONS 

A semi infinite vertical flat plate with prescribed 
uniform heat flux is chosen as the physical model. 

Steady, two dimensional stable laminar boundary- 
layer flow conditions are assumed. For these con- 
ditions, equations for conservation of mass, momen- 
tum and energy may be written in the following 
form : 

with the boundary conditions of 

u=v=o. ) - -g 2’ c ,o P 1 

= qn, = a constant at y = 0 

u=O; j=i az at y=a. (4) 

Since the velocities encountered in laminar free 
convective flows are very small, viscous dissipation is 
neglected. The cross stream inde~ndent variable, j> 
is transferred to a dimensionless, normalised stream 
function, w so that the finite difference grid, which is 
employed in the solution of the boundary-layer 
equations grows or contracts to fit the defined 
boundary layer. With the transformation the set of 
equations (l)-(3) can be written: 

The stream functions at the inner and outer edge of 
the boundary layer and the dimensionless stream 
function are then defined as follows: 

(7) 

The finite difference forms of the equations (5) and 
(6) are obtained by integrating them over areas 
surrounding the grid points. 

NUMERICAL SOLUTION 

The resulting difference equations are solved using 
the Patankar-Spalding program [13]. The most 
significant feature of the Patankar-Spalding method 
is the one dimensional treatment of the region near 
the wall. Near a wall, the velocity, u is small and 
therefore, the convection in x direction is locally 
negligible. Thus near a wall, there exists a “Couette 
flow”, i.e. a one dimensional flow in which the 
conditions are determined primarily by fluxes of 
momentum and energy across the boundary layer. 
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Therefore, for this region the flow can be described 
by ordinary differential equations which can be 
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The Prandtl number variation is expressed as; 

Pr = Pr 

w 
+ WC-PrJi+ 

l+, 
(15) integrated directly to yield the values and slopes of 

the dependent variables at the edge of the Couette 
flow region. These values are used as boundary 

conditions for the finite difference solution, which is 
used from the edge of the Couette flow region to the 
outer edge of the boundary layer. This results in 
reducing the required number of cross stream grid 
points considerably. 

The Patankar-Spalding program [13] is suitably 
modified to solve free convection problems. Another 
modification in the treatment of the Couette flow 
region is necessary to account for the severe 
variation of the thermophysical properties in the 
near-critical region. For the Couette flow region the 
simplified form of the momentum and energy 

equations are 

-(--,= . 

d p di’ o 

dy Pr dy 

Equations (8) and (9) in terms of non dimensional 

parameters can be written as : 

(10) 

P+ di+ 1 
--zz. 

Pr dy+ 
(11) 

In order to integrate equations (10) and (11) the 
variations of p+, p+ and Pr in the Couette flow 

region are required. In the Couette flow region, 
linear variation of p+ and p+ with y, are assumed, 
as the temperature change across this region is small 
due to the small thickness of the region ; 

P+ = P+w 
+ (P+,-P+JY+ (12) 

Y+, 

P+ = P+w 
+ (1 -P+JY+ 

(13) 
Y+c 

Using equations (12) and (13), equation (10) is 

integrated twice to give 

(1 -p+,) 

Y+,ln(l/~+,) 

+(P+,-P+J r 1 P”+W _~ 
_ln(l/l*+J 1 -p+W I 

_ (P+,-P+J 

r 

(1-3p+,) 

4 :q;;;;;;w)(14) 

The variation of the Prandtl number in the near- 
critical region is similar to that of C, and reaches a 
peak near the pseudo-critical temperature, T,,. Hence 
the integration of equation (11) is carried out for two 
separate cases: 

Case (i): T, < T, < T, or T, < Tc < T,. 

Integration of equation (11) using (13) and (15) gives 

Case (ii): T, < T* < T,. 

For this case the Prandtl number variation can be 
expressed by two line segments 

Pr = Pr 

W’ 

+ (pr,-PrJi+ 0 < i, < i,, (17) 
l+* 

and 

Pr = Pr + W-Pr,N+ -i+,) 
* (i+,-i+,) 

i +* < i, d i,,. (18) 

Integration of equation (11) using (13), (17) and (18) 
gives 

I+, = L+*- 
l+* I Pr, - Pr, 

In W,lpr,) 

+Y+$(:!;J1 x [l($;;;;*))]. (19) 

The downstream profiles of velocity and enthalpy 
are determined using the set of finite difference 
equations simultaneously with equations (14) and 
(16) or (19). Properties of water in the near-critical 
region are taken from [15], while those for carbon 
dioxide are taken from [16]. A computer subroutine 
to interpolate, linearly the property values from these 
data is included in the program. For laminar flow, 
the w-distribution, the entrainment rate and the 
initial profiles for velocity and temperature have to 
be specified. Near the critical region the Prandtl 
number is high (Pr >> 1) and hence the region of 
significant temperature gradient will occupy a small 
portion of the velocity boundary layer. It is therefore 
necessary to provide an w-distribution which will do 
justice to both velocity and thermal boundary layers. 
Near the wall and o-spacings must be small ; 
elsewhere they may be large. The distribution 

gave satisfactory results for all the cases studied. For 
a free outer boundary, the use of w as the cross 
stream independent variable requires the specifi- 
cation of the entrainment rate into the flow for each 
downstream step. The entrainment rate is given by 

(PIE = 
- 2PN + PNP3 

yw,+yrd . 
(21) 

The above formula is obtained by assuming a 
parabolic velocity profile and using the simplified 
form of the momentum equation at the outer edge of 
the boundary layer. The initial profiles required for 
this method are based on the polynomial profiles 
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used for the integral solution of the constant 
property boundary fayers under constant wall-heat 
flux conditions. 41 grid points are used and the 
solution is terminated at Ra, = 5 x 10”. 

The velocity profiles for carbon dioxide at 75 bar 
for different values of the wall-heat fux are shown in 
Fig. 2. The maximum velocity in the boundary layer 

Of’ ” ’ / ” ’ 1 ” ’ / 0 1 23 3 L 
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FIG. 2. Velocity profiles for carbon dioxide at 7.5 bar at 
X = 0.03 m. 

increases with q, and the location at which the 
rnax~~ occurs shifts towards the watl as qW 
increases. The temperature profiles, shown in Fig. 3 
indicate that, whenever the value of q, is such that 
T* lies between the wall temperature and that of the 
ambient fluid, there is a distortion of the temperature 
profile. The distortion of the profile may be 
attributed to the nature of variation of C, with 
temperature. For temperature less than T,, C, 
increases with temperature, while for temperatures 
greater than T’., C, decreases with the increase in 
temperature. The distortion occurs at a point where 
the slope dC,/dT changes its sign. There is no 
distortion of the temperature profile for values of q,,, 
which gives wafi temperatures lower than T*. 

Figure 4 shows the variation of the heat-transfer 
coefficient with the wail-heat flux, q,. The heat- 
transfer coefficient gradually increases with q, until 
the wall temperature is several degrees f2-g°C] 
higher than T*. Further increase in qw results in 
decreasing the heat-transfer coefficient. In the near- 
critical region the heat-transfer coefficient depends 
not only on AT, but on the individual values of T, 
and T, as well. The severe variation of C, in this 
region affects the temperature distribution in the 

P/P,,:1415 

Tm i 298°K 

Tt :305'K 

22 3 
yxlD,Cm 

FIG. 3. Temperature profiles for carbon dioxide at 75 bar at 
X = 0.03 m. 

boundary layer which in turn may decide the value 
of the heat-transfer coefficient. Figure 4 also indicates 
that for a specified value of qW the heat-transfer 
coefficient increases as the pressure of the fluid 
approaches the critical value. The variation of the 

FIG. 4. Variation of heat-transfer coefkient with wall-heat 
flux at x = 0.03 m for different pressures. 

temperatn~~ difference, AT with qw presented in Fig. 
5, indicates that AT increases with qw. Also an 
inflexion point exists at a certain value of qw for each 
pressure, which indicates a peak in the value of the 
heat-transfer coefficient. The wail temperature distri- 
bution for some typical values of q, is presented in 
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FIG. 5. Variation of temperature difference, AT with wall- 
heat flux at x = 0.03 m for different pressures. 

Fig. 6. For values of qw such that the wall 
temperature is in the neighbourhood of T,, the 
increase of wall temperature with x is comparatively 

small. As the wall heat flux increases, the rate of 
increase of wall temperature becomes appreciable. 
The predicted wall temperatures are compared in 
Fig. 7 with the wall temperature distribution ob- 
tained by Sparrow and Gregg [14] for constant 
property case. In this figure, the constant property 
solution is indicated by the continuous curve and L 
represents the value of x at which Rag = 10”. It can 
be observed that for low values of qw such that the 
wall-temperature is lower than T,, the predicted 
temperatures agree very well with those of Sparrow 

and Gregg. This can be expected because, when both 
T, and T, are much away from T,, the variation of 
the physical properties is monotonic and gradual. 
However as q, is increased so as to give wall 
temperatures in the neighbourhood of T* the wall 
temperature distribution is quite different from that 
of Sparrow and Gregg. 

P/l& cl.015 

Tm z298.K 

1: ~305 'K 
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FIG. 6. Variation of wall-temperature with x for carbon 
dioxide at 75 bar. 

Based on 352 data points for carbon dioxide, a 
correlation, to evaluate the local heat-transfer coef- 
ficient is obtained by the method of least squares. 
The correlation is 

(Nu), = 0.480(Ra,)0~251(~,/C,~)o~491 

x (p,/p,)“~‘73(p,/p,)-o~378(k-m/k,)-o~584. (22) 

The above form was assumed to account for the 
variation of the physical properties in the near 
critical region. The maximum scatter of the data with 
respect to equation (22) is found to be f lo%, the 
standard deviation being 7%. The scatter is more 
near the critical pressure and when the wall 
temperature is in the neighbourhood of T*. For some 
typical conditions, Fig. 8 shows the comparison of 
equation (22) with the correlation suggested by 
Sharma and Protopopov [ll]. Their correlation, 
based on experimental data gives higher values of 

heat-transfer coefficient (up to 20%) than those 
obtained using equation (22). This difference may be 
attributed to the fact that the deviation of the 

,O.l 
I-’ $ 

d - l q,=1000 w/Mz 
5 b . 2000 

z 
: . 5000 

a 04 lir x 7500 

. 10000 

0.2 + 12500 

0 15000 

I I I , I I I, I, 1, I , , 

0.2 0.1 0.6 0.8 
X/L 

0 

FIG. 7. Comparison of wall-temperature distribution for carbon dioxide at 75 bar with constant property 
solution. 
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FIG. 8. Comparison of the present data with the available experimental data. 

experimental data of Sharma and Protopopov from 

their correlation was found to be *20x. Further 
they have obtained their experimental data for the 
case of free convective heat transfer from vertical 
tubes. In Fig. 8, the present correlation, equation 
(22) also is compared with the correlation suggested 
by Kato et al. [12]. Their correlation also predicts 
higher values of the heat-transfer coefficient than 
those obtained using equation (22). They have used 
integrated mean properties in their correlation and 
have found that their correlation gives higher values 
of heat-transfer coefficient (up to 25”/“) than their 

experimental data. 
It is desirable to have a single correlation for 

different fluids and hence a correlation is obtained 
using 570 data points for water and carbon dioxide. 
The correlation is 

(Nu), = 0.475(Ru )“.250(c,/C )“.431 

x (p,,p,,“~089~~,,~~)o~20’~~~,~~,)~o~675. (23) 

The maximum scatter of the data is found to be 

+20x, the standard deviation being 13.55%. The 
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FIG. 9. Comparison between the values of heat-transfer 
coefficient for uniform wall-temperature and uniform wall- 

heat flux conditions. 

two correlations, equation (22) and equation (23) are 
found to agree with each other within f 6%. 

In Fig. 9 the present solution for constant wall- 
heat flux conditions are compared with the authors’ 
solution for constant wall temperature conditions 
[17]. Comparison is made for carbon dioxide at 
75 bar. In this table 11, is the local heat-transfer 
coefficient for the present uniform heat flux condition 
and h,, the local heat-transfer coefficient of the 
constant wall temperature solution [17]. In com- 
parison A the plate surface temperatures in both the 
solutions are equal for the same elevation x, and in 
comparison B the surface heat fluxes are equal for 
the same elevation x. In comparison A the ratio, 
h,/h, is in the range from 1.09 to 1.12, whereas in 
comparison B the ratio is in the range from 1.07 to 
1.18. Further in comparison A, the ratio is very 
nearly independent of x and T, whereas in com- 
parison B, the ratio seems to depend on the values of 
both x and q,,. 

CONCLUSIONS 

Laminar free convection problems for fluids in the 
near-critical region under constant wall-heat flux 
conditions can be solved using the 
Patankar-Spalding method with suitable modifi- 
cations of the wall functions to account for the severe 
variation of the physical properties in the near- 
critical region. The solutions obtained have indicated 
that, the wall-temperature distribution for near- 
critical fluids is quite different from that for fluids 
under conditions away from the critical region. 
Comparison of the solution for constant wall-heat 
flux conditions with that for constant wall- 
temperature conditions has shown that the heat- 
transfer coefficients for constant wall-heat flux 
conditions are 10~20’~ higher than those for con- 
stant wall-temperature conditions. Whenever the 
pseudo-critical temperature lies between the wall 
temperature and the ambient fluid temperature the 
temperature distribution in the boundaiy layer is 
distorted in the region, where the temperature 
corresponds to the pseudo-critical temperature. The 
correlation proposed to evaluate the local heat- 
transfer coefficients gives values which are within 
20% from the available experimental data. 
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CONVECTION THERMIQUE NATURELLE DE FLUIDES, PROCHES 
DE L’ETAT CRITIQUE, AU CONTACT DE SURFACES VERTICALES 

AVEC FLUX THERMIQUE UNIFORMS 

B&sum&-Des calculs numtriques sont developpts pour la convection laminaire, natureile de fluides 
proches de l’etat critique et une surface plane verticale chat&e a flux uniforme. On prend en compte la 
variation de toutes les proprietis thermophysiques. Les equations sont integries en utilisant la methode 
implicite aux differences finies de Patankar et Spalding. Des calculs sont ellectues pour le gaz carbonique 
ii 75 bar (P/P,, = 1,015), 80bar (P/P,, = 1,083) et 100bar (P/P,, = 1,354) et pour I’eau a 225 bar (P/P,, 
= 1,018) et 245 bar (P/P,, = 1,108), avec des valeurs de flux parietal variant de lOOOW/m’ a 
50 000 W/m2. Basee sur les resultats obtenus, une formule est proposee pour evaluer le coefficient de 

transfert local, pour un large domaine de nombre de Rayleigh (Ra, = 5 x lo6 B 5 x 10”). 

WARMEUBERTRAGUNG DURCH FREIE KONVEKTION AN FLUIDE 
IM UBERKRITISCHEN GEBIET VON SENKRECHTEN FL&HEN 

MIT GLEICHFORMIGEM WARMESTROM 

Zusammenfasaung-Es werden numerische Berechnungen fiir die WIrmeiibertragung durch laminare 
freie Konvektion an Fluide im nahkritischen Gebiet von senkrechten Fliichen mit gleichbleibendem 
Warmestrom durchgefiihrt. Es wurden die Veranderungen aller thermophysikalischen Eigenschaften 
beriicksichtigt. Die maBgebenden Gleichungen wurden nach dem implizierten finiten Differenzen-Schema 
nach Patankar-Spalding integriert. Es wurden Berechnungen fiir Kohlendioxid bei D&ken von 75 bar 
(p/p& = 1,015); 80 bar (p/p*, = 1,083) und 100 bar fj,&, = 1,354) und fiir Wasser bei Driicken von 225 
bar @/pe = 1,018) und 245 bar (p/pk, = 1,108) durchgefuhrt, bei denen die Wand-W~mestromd~chten 
van 1000 bis 50000 W/m’ variiert wurden. Mit den erziehen Ergebnissen wurde die hier vorgeschlagene 
Beziehung entwickeit, mit der die iirtlichen W~me~~~ragungskoeffi~enten in einem weiten Bereich von 

Rayleigh-ZahIen (Ra, = 5 x IO6 bis 5 x 10”) berechnet werden kdnnen. 
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CBOIiOAHOKOHBEKTMBHblti I-IEPEHOC TEllJIA OT BEPTMKAJlbHblX 
PABHOMEPHO HArPEBAEMblX IlOBEPXHOCTEti K N4AKOCTIIM 

B OKOJlOKPMTMYECKO6l OWlACTM 

~llOTWiWl-BbUlOnHeHbl 'IWCJleHHble pa&Tbl UepeHOCa TeRna OT BepTHKaflbHOR IlnOCKO~ paBHO- 

MepHO HarpeBaeMOil IWIaCTHHbl K IKKHLIKOCTRM ilpH naMHHapHOk CBOdOLUiO~ KOHBeKUHH B OKOnO- 

KpHTH'RCKOti 06flaCTH C y+TOM H3MeHeHHII BCeX TeIlnO@H3WeCKI4X XapaKTepWTHK. MCXOnHbIe 

ypaBHeHHfl HHTerpHpOBanHCb C llOMOUlblO HeABHOfi KOHe'lHO-pa3HOCTHOfi CXeMbI naTaHKapa- 

Cnonnmra. Pacs&bt BbInonHeHbl .nnn LIB~OKHCH yrnepona np~ naenetfwnx 75 (P/P=, = 1,015), 
80 (P/P=, = 1,083) H 100 (P/PC, = 1,354) 6ap w nnn Bonbl npe AaBneHWnx 225 (P/P,, = 1,018) H 
245 (P/P,,=l,lO8) 6ap npH pa3nHuHblx 3HaYeHwIx nnOTHOcTH TennoBOrO nOToKa Ha CTeHKe B 

AHana3oHe OT 1000 BT/M' no 50 000 BT/M'. Ha OCHOBaHHH nonyseHHbIx pe3ynbTaToB npenJIolKeH0 

0606ueHHoe CooTHoueHHe Ann noKanbHor0 ir03@$kiuHeHTa Tennoo6Metia B LLIW~~KOM nHana30He 

3HaqewiB wcna Penen (Ra, = 5 x IO6 no 5 x 10io). 


